Functional determinants for general Sturm–Liouville problems
نویسندگان
چکیده
منابع مشابه
Functional determinants for general Sturm-Liouville problems
Simple and analytically tractable expressions for functional determinants are known to exist for many cases of interest. We extend the range of situations for which these hold to cover systems of self-adjoint operators of the Sturm-Liouville type with arbitrary linear boundary conditions. The results hold whether or not the operators have negative eigenvalues. The physically important case of f...
متن کاملFunctional determinants for radial operators
Klaus Kirsten Department of Mathematics, Baylor University, Waco, TX 76798 Abstract We derive simple new expressions, in various dimensions, for the functional determinant of a radially separable partial differential operator, thereby generalizing the one-dimensional result of Gel’fand and Yaglom to higher dimensions. We use the zeta function formalism, and the results agree with what one would...
متن کاملFunctional Determinants for General Self-adjoint Extensions of Laplace-type Operators Resulting from the Generalized Cone
In this article we consider the zeta regularized determinant of Laplace-type operators on the generalized cone. For arbitrary self-adjoint extensions of a matrix of singular ordinary differential operators modelled on the generalized cone, a closed expression for the determinant is given. The result involves a determinant of an endomorphism of a finite-dimensional vector space, the endomorphism...
متن کاملSufficient global optimality conditions for general mixed integer nonlinear programming problems
In this paper, some KKT type sufficient global optimality conditions for general mixed integer nonlinear programming problems with equality and inequality constraints (MINPP) are established. We achieve this by employing a Lagrange function for MINPP. In addition, verifiable sufficient global optimality conditions for general mixed integer quadratic programming problems are der...
متن کاملDensity Functional for General Geometries
A scheme within density functional theory is proposed that provides a practical way to generalize to unrestricted geometries the method applied with some success to layered geometries [H. Rydberg, et al., Phys. Rev. Lett. 91, 126402 (2003)]. It includes van der Waals forces in a seamless fashion. By expansion to second order in a carefully chosen quantity contained in the long range part of the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics A: Mathematical and General
سال: 2004
ISSN: 0305-4470,1361-6447
DOI: 10.1088/0305-4470/37/16/014